
AFRL-AFOSR-UK-TR-2011-0017 
 
 
 
 
 
 

 
 

Optical Arbitrary Waveform Generators Based on Temporal 
and Spectral Shaping of Optical Pulses in Nonlinear 

Metamaterials 
 
 
 

Costantino De Angelis 
 

 University of Brescia 
 Department of Electronics 

 Via Branze, 38 
 Brescia, Italy  25123 

 
 

EOARD GRANT 10-3083 
 
 

June 2011  
 

Final Report for 01 July 2010 to 01 July 2011 
 

 
 
 

 
 
 

Air Force Research Laboratory 
Air Force Office of Scientific Research 

European Office of Aerospace Research and Development 
Unit 4515 Box 14, APO AE 09421 

Distribution Statement A:  Approved for public release distribution is unlimited. 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYY) 

14-06-2011 
2.  REPORT TYPE

Final Report 
3.  DATES COVERED (From – To) 

01 July 2010 – 01 July 2011 
4.  TITLE AND SUBTITLE 

Optical Arbitrary Waveform Generators Based on Temporal 
and Spectral Shaping of Optical Pulses in  Nonlinear 
Metamaterials 

 

5a.  CONTRACT NUMBER 
 

FA8655-10-1-3083 
5b. GRANT NUMBER
 
Grant 10-3083 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Professor Costantino De Angelis 
 
 

5d.  PROJECT NUMBER 

5d.  TASK NUMBER 

5e.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 
University of Brescia 
Via Branze 38 
Brescia, Italy   25123 
 

8.  PERFORMING ORGANIZATION
     REPORT NUMBER 
 
N/A 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 

EOARD 
Unit 4515 BOX 14 
APO AE 09421 

 

10.  SPONSOR/MONITOR’S ACRONYM(S) 
 
AFRL/AFOSR/RSW (EOARD) 

11.  SPONSOR/MONITOR’S REPORT NUMBER(S)
 

AFRL-AFOSR-UK-TR-2011-0017 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited.  (approval given by local Public Affairs Office) 
 
13.  SUPPLEMENTARY NOTES 
 

 
14.  ABSTRACT 
The final goal of the research project is the theoretical design of new optical devices on a Lithium Niobate and Tantalate platform; in particular 
we will focus on low-cost integrated optical pulse shapers on periodically poled Lithium Niobate and Tantalate waveguides. Our approach will 
be mainly used to design pulse shapers, but it also might open new design perspectives for other optical devices. In fact the continuous 
progress in the control of linear and nonlinear properties of optical waveguides has led nowadays to the possibility of engineering the design of 
integrated photonic components down to the sub micrometer space scale. Such waveguides exhibit a spatially periodic micro or nano-structure 
which enables the engineering of their dispersive and nonlinear properties to a degree that was previously unconceivable.. This key technology 
has opened up new possibilities in diverse applications; in particular, from the system point of view, this entails that we can now imagine 
devices with performances that were totally unconceivable only a few years ago. As research continues to advance in this area new frontiers 
are explored: currently there is intense activity directed, on the one hand, to achieve even higher precision in the control of the linear and 
nonlinear properties of optical devices, and on the other hand to conceive new device functionalities, thanks to the increased number of 
degrees of freedom of the fabrication parameters. The latter issue might also open a new design perspective: up to now optical devices have 
been mainly designed on a try and test procedure that was reasonable since only a small number of parameters was free for the design (i.e. 
controllable in the fabrication process). With the new incredible number of degrees of freedom that are nowadays available, this old style design 
might hide the possibility of the realization of new device functionalities: one of the main theoretical goals of our project is thus to introduce and 
test new theoretical and numerical techniques to open the way for new design procedures for optical waveguide components (for example 
genetic algorithms and iterative procedures based on optimal control theory used as design tools.   
 

 
 
 
 
 
 
 
 
 
 

15.  SUBJECT TERMS 
 

EOARD, Optical parametric oscillators, Nonlinear Optics 

16. SECURITY CLASSIFICATION OF: 17.  LIMITATION OF 
ABSTRACT 

 
SAR 

18,  NUMBER 
OF PAGES 

 
12 

19a.  NAME OF RESPONSIBLE PERSON
A. GAVRIELIDES 
 a.  REPORT 

UNCLAS 
b.  ABSTRACT 

UNCLAS 
c.  THIS PAGE 

UNCLAS 19b.  TELEPHONE NUMBER (Include area code) 
+44 (0)1895 616205 

                                                                                                                                     Standard  Form  298  (Rev.  8/98) 
Prescribed by ANSI Std. Z39-18

 



 

Grant FA8655-10-1-3083 
 

Optical Arbitrary Waveform Generators Based on Temporal and Spectral 
Shaping of Optical Pulses in Nonlinear Metamaterials 

 
Comprehensive final report 

 
ABSTRACT. 
During the project, using an approach based on optimal control theory, we have first implemented a pulse 
shaper design tool. Using as tuning parameter the longitudinal dependence of the second order response χ(2)  of 
the medium where propagation takes place, the goal has been achieved by minimizing the distance between a 
given target pulse and the second harmonic at output of a device for second harmonic generation. The outcome 
of this first theoretical demonstration of pulse shaping technique is the function χ(2)(z) which is necessary to 
obtain the desired shaping effect. Starting from results we have previously obtained [1], we have demonstrated 
here both wavelength tunability and arbitrary pulse shaping capability.  
In this framework we have also explored ultrabroadband optical pulse propagation in nonlinear quadratic media 
[2, 3] to address engineered supercontinuum generation as a valuable tool for spectral shaping. 
According to the work plan described in the research proposal, during the third month of the project activities, 
Matteo Conforti and Costantino De Angelis have been visiting their research partners in the United States, 
namely:  

• Prof. Alejandro B. Aceves and Prof. Ildar Gabitov at the Department of Mathematics of the Southern 
Methodist University, in Dallas. 

• Dr. Michael Scalora, AMSRD-WSS Charles M. Bowden Research Facility at Redstone Arsenal, 
Huntsville. 

• Prof. Triantaphyllos R. Akylas, Department of Mechanical Engineering, Massachusetts Institute of 
Technology, Cambridge, Massachusetts. 

During the seventh month of the project Stefan Wabnitz has been visiting Prof. Alejandro B. Aceves at the 
Department of Mathematics of the Southern Methodist University, in Dallas.  
 
The research work carried on during these visits has been very fruitful and has been a real boost for the project; 
in particular we have identified there the need for a better understanding of plasmonic wave dynamics, thereby 
providing the theoretical underpinnings of potential innovative applications.  To this end, a combined analytical 
/numerical study of light propagation in various structures composed of metals and dielectrics has been 
pursued.   
In this framework periodic structures, consisting of metal and dielectrics have been investigated and we have 
demonstrated the existence of new solitary wave solutions of a model describing light propagation in 
nonuniform (linearly and nonlinearly) waveguide arrays. This general model describes energy localization and 
transport in different physical settings, ranging from metal-dielectric (i.e. plasmonic) to photonic crystal 
waveguides. The solitons exist for both focusing, defocusing and even for alternating focusing-defocusing 
nonlinearity [4]. 
 
IN DETAIL. 
In the field of modelling plasmonic nanostructures and engineering of their guiding properties, the work done 
in this project has paved the way to the management of broadband light propagation. Moreover, all the 
numerical tools already developed by UNIBS to analyse the modal properties of metal-dielectric structures and 
the field evolution in the linear regime are to be considered as one of the result of this research project. As far 
as diffraction management is concerned, we have considered propagation in a structure where two different 
plasmonic devices are involved. The first one is a system composed of alternating metal (30 nm) and dielectric 
(120 nm) layers. 
In figure 1 we show the dispersion relation and the profiles of the two modes supported by this directional 
coupler (to be called DC1). In stark contrast with conventional waveguides, the fundamental mode of this 
structure is odd. Moreover we can see that the fundamental mode has one node whereas the second one has no 
nodes. 



 
 
 
 

 
Figure 1: a) Dispersion relation of the fundamental (odd) and second order (even) mode of the coupler DC1. b) 

Fundamental (red) and second order (blue) mode @ 600nm. 
 
A second well known plasmonic guiding structure is the metal nanoparticle array, where the energy transport is 
supplied by electromagnetic resonant coupling between metal particles arranged in a linear chain. We have 
studied double nanoparticle chains, where the electromagnetic energy is confined between two linear chains. 
As an example we considered double chain waveguides composed of silver nanoparticles with a radius of 50 
nm in a dielectric host with a longitudinal separation of 110 nm and a distance between the chains of 150 nm. 
In figure 2 we show the dispersion relation and the mode profiles of two coupled waveguides composed of 
three nanoparticle chains (to be called directional coupler DC2).  As opposed to the previous directional 
coupler, the fundamental mode here is even and the second order mode is odd. 

 
Figure 2: a) Dispersion relation of the coupler DC2. Thick curves, fundamental (even) and second order (odd) mode. 

Dashed curves, higher order modes. Thin horizontal line denotes a wavelength of 600 nm. b) Fundamental and second 
order mode @ 600nm. 

 
We have then considered the uniform array obtained using directional couplers DC1 (DC2) as basic building 
blocks. The field evolution along the waveguide arrays has been simulated without any approximation by 
solving Maxwell's equations through a frequency-domain finite-element method, using arrays composed by 17 
waveguides. The central waveguide of the array is excited with a Gaussian field, which spreads during 
propagation and generates the typical diffraction pattern observed also in conventional waveguide arrays: two 
outermost wings and a few less intense peaks in the central waveguides. The same qualitative behavior is 
observed for both arrays since the intensity evolution is not influenced by the diffraction sign. On the other 
hand the phase front curvature of the propagating field depends on the diffraction sign. 
Therefore, if we alternate arrays characterized by normal and anomalous diffraction, the input field shape can 
be periodically recovered as demonstrated in figure 3. 

 
Figure 3: Time average power flow along propagation in the diffraction managed device @ 600nm. 

 
In the nonlinear regime, we have obtained solitary wave solutions of a model describing light propagation in 
binary (linearly and nonlinearly) waveguide arrays. This model describes energy localization and transport in 



various physical settings, ranging from metal--dielectric (i.e. plasmonic) to photonic crystal waveguides. The 
solitons exist for focusing, defocusing and even for alternating focusing--defocusing nonlinearity. 
 
In this project we have considered a binary array designed in such a way that the coupling between successive 
waveguides switches periodically from C to -C(1+ε), thus opening a gap centered at zero Bloch momentum in 
the linear dispersion relation. We consider also a binary Kerr nonlinearity and we look for self-sustained 
nonlinear propagation in the form of gap solitons in such a structure. Specifically, extending previously derived 
results, we obtain in the continuum limit exact analytical solutions for both stationary and ``walking" gap 
solitons moving along the spatial coordinate with a tunable velocity. 
We have also focused our attention on the existence domain for bright gap solitons. These solitons belong to a 
family with two free parameters: the velocity v and the energy unbalance.  
 

 
Figure 4: Existence conditions for gap soliton solutions on transverse and longitudinal wave number. Continuous blue line 
refers to the dispersion relation of the linear problem; the red region is the existence domain for gap soliton solutions.  

 
Such solitons display several interesting and unusual features, unique to this type of waveguide structures, and 
are possible even in the case of alternating focusing-defocusing nonlinearity [4]. 
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Energy localization and transport in binary waveguide arrays
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We obtain solitary-wave solutions of a model describing light propagation in binary (linearly and nonlinearly)
waveguide arrays. This model describes energy localization and transport in various physical settings, ranging
from metal-dielectric (i.e., plasmonic) to photonic crystal waveguides. The solitons exist for focusing, defocusing,
and even for alternating focusing-defocusing nonlinearity.

DOI: 10.1103/PhysRevA.83.043822 PACS number(s): 42.65.Tg, 73.20.Mf, 78.67.Pt

I. INTRODUCTION

Discrete optics in coupled waveguides has been an area of
intense research activities during the last three decades (see [1]
for a recent review). Most efforts have been devoted to the
analysis of linear and nonlinear properties of uniform waveg-
uide arrays, i.e., arrays composed of equally spaced identical
waveguides, and both one-dimensional and multidimensional
configurations have been considered theoretically as well as
experimentally [2–8].

On the other hand, nonuniform waveguide arrays offer a
richer setting where engineering of the periodic structure can
provide further degrees of freedom. In this context, zigzag
waveguide arrays (i.e., the cascade of arrays characterized by
alternating tilt angles) have been introduced to get diffraction
management [9]. Binary arrays composed of waveguides
with different wave numbers have been thoroughly studied
(see [10–13] and related works) since they exhibit interesting
features, such as double refraction, due to their intrinsic two-
band nature. Moreover, binary arrays with different coupling
coefficients have been considered, since they might offer a
more feasible experimental framework in which to exploit a
two-band structure in the linear and nonlinear regimes [14,15].
In this instance, the use of photonic crystal waveguides [16] or
waveguides based on plasmonic confinement [17,18] offers a
unique setting in which to exploit propagation in the so-called
alternating positive and negative coupling regime [19,20].
Efremidis et al. [20], in particular, studied nonlinearly uniform
arrays where the coupling coefficients are equal in modulus
but of opposite sign. In this case the structure does not
possess a gap in the linear spectrum, and can be reduced to
a uniform array by a phase transformation. Exploiting this
transformation, families of discrete solitons were calculated
starting from the well-known discrete Schrödinger equation.

In this paper we consider a binary array designed in such a
way that the coupling between successive waveguides switches
periodically from C to −C(1 + ε), thus opening a gap centered
at zero Bloch momentum in the linear dispersion relation.
We consider also a binary Kerr nonlinearity and we look for
self-sustained nonlinear propagation in the form of gap solitons
in such a structure. Specifically, extending previously derived
results [21–30], we obtain in the continuum limit exact analyt-
ical solutions for both stationary and “walking” gap solitons
moving along the spatial coordinate with a tunable velocity.

*costantino.deangelis@ing.unibs.it

II. THEORETICAL MODEL AND SOLITON SOLUTIONS

According to coupled mode theory and taking into account
third-order nonlinearities in the form of a pure Kerr effect, the
governing equations read as [10]

iE′
nz

+ βnE
′
n + Cn−1E

′
n−1 + Cn+1E

′
n+1 + χn|E′

n|2E′
n = 0,

where E′
n is the amplitude of the modal field Mn(x) of the nth

waveguide; βn is the propagation constant of each individual
waveguide (βn = β + �β/2 for n even and βn = β − �β/2
for n odd); χn, the site-dependent nonlinear coefficient, is
γ1 (γ2) for n even (odd); and Cn−1,Cn+1 are the coupling
coefficients with the (n − 1)th and the (n + 1)th waveguides,
respectively. In the specific case of interest, Cn−1 = C1 and
Cn+1 = C2 when n is even, whereas Cn−1 = C2 and Cn+1 =
C1 when n is odd. We then perform the transformation E′

n =
En exp(iβz) and we separately consider the mode amplitudes
in the even and odd waveguides. Finally, E2n = An and
E2n−1 = Bn are governed by the following two sets of coupled
equations with constant coefficients:

iAnz + �β

2
An + C1Bn + Bn+1 + γ1|An|2An = 0,

(1)

iBnz − �β

2
Bn + An−1 + C1An + γ2|Bn|2Bn = 0,

where C2 has been set equal to 1, without loss of generality.
Assuming Bloch-wave disturbances, (An,Bn) ∝

exp{i(nkx + kzz)}, the linear dispersion relation of Eqs. (1)
reads

k2
z =

(
�β

2

)2

+ C2
1 + 1 + 2C1 cos kx.

Note that a band gap opens whenever �β �= 0 and/or for
C1 �= ±1, the band edges corresponding to the wave number
kx = 0 for C1 < 0 and kx = π for C1 > 0. Moreover, there
is numerical evidence [10,28] that discrete solitons can reside
inside this gap. We shall make a comprehensive analytical
study of stationary and moving gap solitons on the basis of an
equivalent continuous model.

Specifically, for C1 < 0, in the neighborhood of kx = 0, we
use the expansions

An±1(z) = u(x,z) ± ux(x,z) + 1
2uxx(x,z) + · · · ,

Bn±1(z) = w(x,z) ± wx(x,z) + 1
2wxx(x,z) + · · ·

043822-11050-2947/2011/83(4)/043822(6) ©2011 American Physical Society
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to obtain (as a first-order approximation)

iuz + �β

2
u + wx + εw + γ1|u|2u = 0,

(2)

iwz − �β

2
w − ux + εu + γ2|w|2w = 0,

where C1 = −1 + ε. This equation system also arises in the
neighborhood of kx = π for C1 = 1 + ε, following a similar
expansion procedure after the change of variables (An,Bn) →
(−1)n(An,Bn).

We now look for both stationary and walking self-confined
solutions of the system defined by Eqs. (2). To this end, we
use the following trial functions [23]:

u(x,z) = 1
2 [K1g1(ξ ) + iK2g2(ξ )] exp(iψ cos Q),

w(x,z) = 1
2i

[K1g1(ξ ) − iK2g2(ξ )] exp(iψ cos Q),
(3)

ξ = x + vz√
1 − v2

, ψ = vx + z√
1 − v2

,

K1 =
(

1 + v

1 − v

)1/4

, K2 =
(

1 − v

1 + v

)1/4

with g1,2 two arbitrary complex functions, −1 � v � 1 and
0 � Q � π . Although not necessary, for the sake of simplicity,
from now on we set �β = 0 (i.e., the biatomic nature of the
array is left to the coupling coefficients only).

Substitution of the ansatz (3) into Eqs. (2) gives (s = γ1 +
γ2, d = γ1 − γ2)

−ġ1+ i cos(Q)g1+ iεg2+ s

8i

(
K4

1 |g1|2g1+ 2|g2|2g1− g2
2g

∗
1

)
−d

8

(− K2
2 |g2|2g2 − 2K2

1 |g1|2g2 + K2
1g2

1g
∗
2

) = 0,

ġ2 + i cos(Q)g2 + iεg1 + s

8i

(
K4

2 |g2|2g2 + 2|g1|2g2 − g2
1g

∗
2

)
−d

8

(
K2

1 |g1|2g1 + 2K2
2 |g2|2g1 − K2

2g2
2g

∗
1

) = 0.

These equations have the invariant P = |g1|2 − |g2|2; as we
are interested in bright solitons, we set P = 0, so that |g1|2 =
|g2|2 and g1,2(ξ ) = f (ξ ) exp[iθ1,2(ξ )]. Finally, using η = f 2

and µ = θ1 − θ2, we get

η̇ = −∂H

∂µ
, µ̇ = ∂H

∂η
,

H = 2η(ε cos µ + cos Q)
(4)

− s

8
η2

(
K4

1

2
+ K4

2

2
+ 2 − cos(2µ)

)

− d

4
η2

(
K2

1 + K2
2

)
sin µ.

Equations (4) represent a one-dimensional (thus integrable)
Hamiltonian system, and solitary-wave solutions correspond
to the separatrix trajectories that are homoclinic to (i.e.,
emanate from and return to) the unstable fixed points of (4). In
the following we assume s > 0, since the results can be easily
extended to the case s < 0 by the substitution µ → µ + π ,
Q → π − Q.

Bright solitons emanate from the unstable fixed point
(η0,µ0) = (0, ± arccos[− cos(Q)/ε]) and correspond to level
curves of the Hamiltonian H (η0,µ0) = 0. By exploiting H =
0, we can derive the expression of η as a function of µ from
the definition of H :

η = 16(ε cos µ + cos Q)

s
[

K4
1

2 + K4
2

2 + 2 − cos(2µ)
]

+ 2d
(
K2

1 + K2
2

)
sin µ

.

(5)

By inserting Eq. (5) into µ̇ = ∂H
∂η

, it follows that

µ̇ = −2(cos Q + ε cos µ). (6)

This equation can be easily integrated to obtain

µ(ξ ) = −2 arctan

[√
ε + cos Q

ε − cos Q
tanh[

√
ε2 − cos(Q)2ξ ]

]
.

(7)

and, upon substitution in Eq. (5),

η(ξ ) = sech(δξ )2(cos Q + ε)

−4db1α tanh(δξ ) + sb2[1 + α2 tanh(δξ )2] − 2s
[1−α2 tanh(δξ )2]2

1+α2 tanh(δξ )2

, (8)

where α =
√

ε+cos(Q)
ε−cos(Q) , δ =

√
ε2 − cos(Q)2, b1 = K2

1 + K2
2 ,

b2 = K4
1

2 + K4
2

2 + 3.
Once we get the solutions η(ξ ) and µ(ξ ), we can find the

fields u(x,z) and w(x,z) by substitution in (3) and solving

θ̇1 = cos Q + ε cos µ − s

8
η
[
K4

1 + 2 − cos(2µ)
]

− d

8
η

(
3K2

1 + K2
2

)
sin µ. (9)

The expression of θ1 is rather cumbersome except for station-
ary solutions (v = 0). In fact by inserting (5) and (6) in (9) it
is straightforward to show that θ1 = µ/2.

We now focus our attention on the existence domain
for bright gap solitons. These solitons belong to a family
with two free parameters: the velocity v (−1 � v � 1) and
Q (arccos ε � Q � π − arccos ε). From Eq. (5) we note,
however, that, as the array parameters (ε,s,d) are changed, the
amplitude η can diverge at some points, entailing that some
(v,Q) couples are not allowed.

043822-2
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More specifically, for a given Q, we find that η(ξ ) is
bounded for all ξ , and bright soliton solutions can exist only
above a critical velocity v; as long as s > |d| this critical
velocity is 0 so that all possible v and Q values in the
(Q,v) plane can be attained; however, when |d| � s a different
situation arises: for arccos ε � Q � π/2, solutions only exist
above a critical velocity vcr :

|vcr | =
√

2

s

√
s2 − d2 + |d|

√
d2 − s2. (10)

For π/2 � Q � π − arccos ε such a critical velocity does
not exist; however, bright soliton solutions are permitted only
for Q � π − arccos(ε

√
t) with t given by

t =
s2(3 + f1) − (df2)2 +

√
(df2)4 − 2s2d2f 2

2 (1 + f1)

2s2
,

(11)

f1 = K4
1 + K4

2

2
, f2 = K2

1 + K2
2 .

This last condition can be derived by looking at
the phase plane (η,µ). When Q = π − arccos(ε

√
t),

another unstable fixed point exists characterized by µp =
−sgn(d) arccos[− cos(Q)/ε)], ηp = 8ε2

√
1 − cos(Q)2/ε2

sec(Q)/[−|d|(K2
1 + K2

2 ) + 2s
√

1 − cos(Q)2/ε2] and having
Hamiltonian H (ηp,µp) = 0. In this instance the separatrix
trajectory is heteroclinic, connecting the points (η0,µ0)
and (ηp,µp), and the resulting solution corresponds to a
kink soliton. If we increase Q above this threshold, the
trajectories in the phase plane become unbounded, preventing
the existence of localized solutions.

The existence conditions on v and Q can be easily
translated into conditions on the soliton transverse phase
kx = v cos(Q)/(

√
1 − v2) and propagation constant kz =

cos(Q)/(
√

1 − v2), as illustrated in Fig. 1.

FIG. 1. (Color online) Existence conditions on kx and kz.
Continuous line refers to the dispersion relation of the discrete
problem; dashed line shows the dispersion relation of the continuous
approximation and the filled region corresponds to the existence
domain of the gap soliton solutions (ε = 0.25, s = 2, d = 2.1).
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FIG. 2. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; inset shows phase plane for Q = 1.77 (open circle indicates
saddle, filled circle indicates stable center); (b) field amplitude in
even (continuous) and odd (dashed) waveguides (v = 0); (c) field
evolution along the array for v = 0; (d) field evolution along the
array for v = 0.5. In all panels, ε = 0.25, Q = 1.77, s = 2, d = 0.

III. EXAMPLES

In this section, we discuss some specific examples of the
soliton solutions derived earlier. We also show the robustness
of our solutions in some representative cases where we
consider propagation in different arrays.

As a first example, we consider an array with all the
waveguides having the same nonlinear response (s = 2,d =
0). In this case, bright soliton solutions do exist for arccos ε �
Q � π − arccos ε as one can also infer from the bifurcation
diagram of Fig. 2(a), that shows the amplitude η0 of the
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FIG. 3. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; left (right) inset shows phase plane for Q = 1.5 (Q = 1.77)
(open circle indicates saddle, filled circle indicates stable center); (b)
field amplitude in even (continuous) and odd(dashed) waveguides
(v = 0); (c) field evolution along the array for v = 0; (d) field evolu-
tion along the array for v = 0.5. In all panels, ε = 0.25, Q = 1.77,
s = 2, d = 2.
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FIG. 4. (a) Bifurcation diagram of the Hamiltonian system
(v = 0): continuous line for stable centers, dashed line for unstable
saddles; left (right) inset shows phase plane for kink (bright) soliton
(open circle indicates saddle, filled circle indicates stable center); (b)
field amplitude in even (continuous) and odd (dashed) waveguides
(v = 0); (c) field evolution along the array for v = 0; (d) field
evolution along the array for v = 0.5. In all panels, ε = 0.25,
Q = 1.77, s = 2, d = 2.1.
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fixed points of system (4) as a function of the parameter
Q. In fact, in this interval both the unstable saddle η0 = 0
and a stable center with η0 �= 0 exist. From the phase plane
depicted in the inset (corresponding to Q = 1.77), it is
evident that the separatix describing the soliton emanates from
(η0,µ0) = (0, arccos[− cos(Q)/ε]), turns around the center
and returns to the fixed point with vanishing η. Note that
in this situation (d = 0) the v = 0 case shows perfect mirror
symmetry between the field in the even and odd sites [see
Fig. 2(b)]; as d increases this mirror symmetry is obviously
lost. Figures 2(c) and 2(d) show the propagation of a stationary
(v = 0) and a moving (v = 0.5) soliton.

The second example we are considering in this section
corresponds to s = 2,d = 2 (i.e., an interlaced linear-nonlinear
array). As one can see from Fig. 3(a), for this choice of
parameters bright soliton solutions for v = 0 exist only for
π/2 < Q � π − arccos ε, because the stable center does not
exist for Q < π/2. In this instance, the phase portrait is
qualitatively different for Q greater or less than π/2 [right
and left insets of Fig. 3(a)]. For Q > π/2 the phase portrait
is similar to the d = 0 case, except for the asymmetry with
respect to µ. For Q < π/2 the separatrix emanating from the
saddle is not closed and separates orbits of unbounded motion
from periodic motion. As a consequence solitons do not exist.

It is remarkable to note that even in the case of interlaced
focusing-defocusing nonlinearities soliton solutions still exist
as clearly demonstrated in Fig. 4 for s = 2,d = 2.1; this
applies also to solutions walking along the array as shown
in Fig. 4(d). Note also that, as can be seen from Fig. 4(a), in
this case we do not have bright soliton solutions for Q < 1.73;
however, as we have already noted above, in the presence of a
nonzero transverse velocity we have access to this region of Q

values. This is what we can see in Fig. 5 where propagation in
an interlaced focusing-defocusing array is shown for Q = 1.72
and v = 0.5; note that, remarkably, this last case corresponds
to a situation where we do not have bright soliton solutions
with zero transverse velocity.

Another interesting feature of the interlaced focusing-
defocusing case is the existence of flat-top and kink solitons,
due to the presence of an additional saddle in the bifurcation
diagram. It is possible that the two saddles possess the same

FIG. 5. Field evolution along the array for v = 0.5; here ε =
0.25, Q = 1.72, s = 2, d = 2.1.
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FIG. 6. (a) Example of a flat-top (thin lines) and a kink (thick
lines) soliton. Here ε = 0.25,Q = 1.786 553 604 650 208 for the dark
soliton (Q = 1.786 553 7 for the flat-top soliton), s = 2, d = 2.5,
v = 0.5. (b) Field evolution along the array for the kink soliton.

Hamiltonian: in this case the heteroclinic orbit connecting the
two points gives rise to a kink soliton [left inset of Fig. 4(a)].
As Q approaches the existence limit defined by (11), bright
solitons become wider and eventually take a kinklike shape.
An example of this kind of solution is reported in Fig. 6(a).
Figure 6(b) shows the propagation of the kink soliton with
velocity v = 0.5.

IV. CONCLUSIONS

We have analyzed a model describing light propagation
in a binary array, accounting for alternating positive and
negative linear coupling as well as nonuniform nonlinearity.
This model can be applied in different physical settings
such as plasmonic, Bragg, and photonic crystal waveguides.
We derived exact bright and kink soliton solutions in the
long-wavelength (i.e., continuous) limit. Such solitons display
several interesting and unusual features, unique to this type
of waveguide structure, and are possible even in the case of
alternating focusing-defocusing nonlinearity.
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